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In this paper, a new version of multi-objective differential evolution with
dynamically adaptable mutation factor is used for Pareto optimization of
a 5-degree of freedom vehicle vibration model excited by non-stationary
random road profile. In this way, non-dominated sorting algorithm and
crowding distance criterion have been combined to differential evolution
with fuzzified mutation in order to achieve multi-objective meta-heuristic
algorithm. To dynamically tune the mutation factor, two parameters,
named, number of generation and population diversity are considered as
inputs and, one parameter, named, the mutation factor as output of the
fuzzy logic inference system. Conflicting objective functions that have
been observed to be optimally designed simultaneously are, namely,
vertical seat acceleration, vertical forward tire velocity, vertical rear tire
velocity, relative displacement between sprung mass and forward tire and
relative displacement between sprung mass and rear tire. Furthermore,
different pairs of these objective functions have also been chosen for bi-
objective optimization processes. The comparison of the obtained results
with those in the literature unveils the superiority of the results of this
work. It is displayed that the results of 5-objective optimization subsume
those of bi-objective optimization and, consequently, this achievement
can offer more optimal choices to designers.

Introduction

One of the most important part of a typical vehicle
which considerably influences on the ride comfort
of passengers and road holding capability of the
vehicle is suspension system [1-2]. As a matter of
fact, achieving an acceptable trade-off between
road holding capability and ride comfort is always
a challenging task for the researchers because the
two aforesaid criteria conflict each other.
Therefore, designing a suspension system means
to seek a proper balance between these two
contradictory criteria [3]. Furthermore, a proper
suspension system should achieve sufficient road
holding ability with having good ride comfort [4].
Totally, three types of suspension systems are
used in vehicle to suppress the unwanted effects
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of road irregularities which are named, passive,
semi-active and active ones. Passive ones, often
used in traditional vehicles, consist of springs and
dampers located between the vehicle body
(sprung mass) and wheel-axle assembly (unsprung
mass). Passive suspensions can only provide good
ride comfort or good road holding but semi-active

ones  with  their  changeable  damping
characteristics and low power expenditure
suspension  systems reach a  promising

amelioration [2]. Active suspension uses an
external energy source [1] for an actuator which is
situated between the sprung and unsprung mass
parallel to the suspension components. Active
suspensions provide auspicious functioning for
the suppression of the undesirable vibrations
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produced by the road excitation in comparison
with the passive and semi-active suspension [2].
Baumal et al. [5] presented a global technique
search based on genetic algorithm (GA) for the
optimization of an active vehicle suspension
minimizing a performance criteria  while
satisfying a number of other design specifications.
It has been shown that road irregularities has little
influence on the seat acceleration of active
suspension when compared to passive one. It has
also been resulted that realistic execution of the
active skyhook dampers must be characterized by
attaining actuators that can give the requisite
power. In order to collate results with a local
optimization search technique, the gradient
projection method and GA were used for the
optimization of the passive suspension system.
Comparison of GA results and the ones of
gradient projection method showed the superiority
of GA method. It has been proved that although
GA needs more computing effort than a gradient
projection method and it does not need any
gradient of the objective function and constraints
regarding the set of design variables. It was also
presented that the efficacy of the GA can be
enhanced by checking formerly analyzed designs
S0 as to prevent re-assessing the fitness for a same
design. For ameliorating efficiency and
uniformity of results, the GA parameter values,
such as population size and mutation probability,
might be adjusted more efficaciously.

Marzbanrad et al. [6] proposed an optimal
preview control of a vehicle suspension system
traversing on a rough road. A three-dimensional
seven degree-of-freedom car-riding model and
some information of some types of road surface
roughness, containing haversine (hole/bump) and
stochastic filtered white noise models, were
utilized in this study. It was supposed that contact-
less sensors fastened the wvehicle front bumper
evaluate the road surface height at some distances
in the front of the car. The suspension systems
were optimized with regard to ride comfort and
road holding capability considering accelerations
of the sprung mass, tire deflection, suspension
rattle space and control force. The functioning and
power requisite of active, active and delay, active
and preview systems were calculated and
compared with those for the passive system. The
results confirmed that the optimal preview control
enhances all features of the vehicle suspension
operation while needing less power.

Chen et al. [7] presented an adaptive sliding
controller for a non-autonomous quarter-car
suspension system with time-varying loadings.
The system model was firstly represented with
regard to the static positions subject to the
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nominal car-body load. In order to deal with the
system nonlinearities and uncertainties, the
function approximation method was utilized.
After that the control rule and the update laws
were planned to ensure the stability of the closed-
loop by using Lyapunov direct method. Albeit the
system encompasses time-varying uncertainties,
the proposed controller offered considerable
performance amelioration in comparison with the
passive design in terms of ride comfort.
Additionally, the controller can be recognized
with only two characteristics, namely, position
and velocity feedback of the car body. Though
this showed a significant simplification in
hardware execution.

Gao et al. [8] proposed an approach based upon a
load-dependent controller for the multi-objective
control of active suspension quarter-car model
considering uncertain parameters by using linear
matrix inequalities. The gain matrix of the
obtained controllers pivoted on the online
accessible data of the body mass which changes
with vehicle load based on parameter-dependent
Lyapunov functions. Comparison of the method
of this work with the previous approaches showed
the good performance of the results of this work.
Du and Zhang [9] presented a delay-dependent
H,, controller design approach for active vehicle
suspensions with actuator time delay. Three main
criteria, namely, ride comfort, road holding, and
suspension deflection were observed by modelling
an appropriate state feedback H, controller to
achieve a compromise between the aforesaid
criteria. By extracting the upper bound for the
scalar product of two vectors, the state feedback
H,, control law was achieved based upon the
outcome of delay-dependent matrix inequalities. It
has been shown that modelling a controller that
observes the time delay effect in advance can
insure the closed-loop be asymptotically stable
within  permissible time delay bound. A
simulation example was utilized to show that the
designed controller can efficaciously attain the
optimal vehicle suspension functioning even with
actuator time delay to a certain level.

N. Nariman-Zadeh et al. [10] proposed a multi-
objective uniform-diversity genetic algorithm
(MUGA) with a diversity preserving mechanism
called the e-elimination algorithm for multi-
objective optimization of a five-degree of freedom
vehicle vibration passive suspension model.
Conflicting objective functions that have been
observed for optimization were, namely, vertical
seat acceleration, vertical forward tire velocity,
vertical rear tire velocity, relative displacement
between sprung mass and forward tire and relative
displacement between sprung mass and rear tire.
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Various pair-wise 2- and 5-objective optimization
processes were performed. In addition, it has been
shown that the results of 5-objective optimization
subsume those of 2-objective optimization using
Pareto frontiers and offer, as a result, more
options for optimal design. Significantly, it was
demonstrated that a trade-off optimum design
point can be obtained from those Pareto fronts.
Comparison of the results of this work with those
in the literature confirmed the superiority of the
results of this study.

Guo and Zhang [11] worked on the active
suspension control for non-stationary road surface
applying robust H, control and linear matrix
inequality optimization. The H,, state feedback
control strategy with time-domain hard constraints
was introduced to design the active suspension
control system of a two-degree-of-freedom
quarter car model considering parameter
uncertainty. It has been shown that the suggested
control approach can attain a considerable
amelioration on ride comfort and fulfil the
specifications of dynamic suspension deflection,
dynamic tire loads and required control forces
considering given constraints.

Jamali et al. [1] presented a multi-objective
uniform-diversity genetic algorithm (MUGA)
combined with Monte Carlo simulation (MCS) to
find Pareto frontiers of some incommensurable
objective functions in the optimum design of an
uncertain five-degree of freedom vehicle active
suspension model. The ten contradictory objective
functions that have been observed for
minimization are, namely, mean and variance of
vertical acceleration of seat, means and variances
of vertical velocity of both forward and rear tires,
means and variances of relative displacements
between sprung mass and both forward and rear
tires. Hence, an optimum robust design was
obtained based on Pareto approach considering
the probabilistic metrics of those objective
functions by the combination of MCS and
MUGA. A trade-off design point was chosen as a
compromise from the view of the whole Pareto
fronts obtained from the combination of MCS and
MUGA approach. The robustness of the proposed
design in comparison with the deterministic one
proved the superiority of the proposed approach
of this work.

Mahmoodabadi et al. [12] suggested a new
approach based on the combination of genetic
algorithm  operators and particle  swarm
optimization algorithm. Tuning of the operators
such as traditional and multiple-crossover was
based on fuzzy logic. To analyze the behavior of
the presented algorithm, it was carried out on nine
and five popular single and multi-objective test

functions, respectively. The results were
compared with the ones of some other approaches
in both single and multi-objective classes. The
results proved that the proposed hybrid algorithm
is a successful method in the both single and
multi-objective optimization area. Furthermore,
this hybrid algorithm has been successfully used
to optimally model the vehicle passive suspension
system as used in [10]. The conflicting objective
functions were chosen as [10]. Comparison of the
results with those of [10] confirmed the very good
performance of the proposed method of this work.
It is important to notice that the design variables
used in [1, 10, 12] are, namely, seat damping
coefficient,  vehicle  suspension  damping
coefficient, seat stiffness coefficient, vehicle
suspension stiffness coefficient and seat position
in relation to the center of mass. In addition in [1],
the damping coefficients for the active suspension
are used as design variable besides the aforesaid
design variables. In all three aforementioned
references, a double bump used as the road
excitation. In [1], four uncertain parameters,
namely, seat mass, sprung mass, excitation
amplitude, and excitation frequency, are also used
besides the certain parameters.

It should be noted that there is a good capacity to
utilize global optimization approaches for
suspension system design [5]. Therefore, by
observing this point and reviewing the above-
mentioned points, multi-objective optimization of
vehicle vibration model [10, 12] with road
irregularities based on the non-stationary road
surface [11] has been conducted in this work.

The optimization methods based on the
evolutionary algorithms (EAs) are different from
the gradient based methods. Main different is that
in the gradient based methods, the starting point
and the direction of gradient has a great influence
on the final result. In fact, if the starting point is a
proper point, there is a good chance to reach the
global optimum. Otherwise, the algorithm may be
trapped in the local optima [13]. But, in case of
EAs, because of the stochastic population-based
nature of them, the algorithm does not depend on
the starting point and the direction of the gradient
of the objective function. As a matter of fact, their
performance depends on the randomness which
provides the diversity of the population. The
aforementioned randomness may also help the
perturbation of the search point which can help to
escape farm the local optima. On the other hand,
the population based nature of the EAs can help
them to change the search direction in which to
reach the local optima and at the same time in
some point to not improve the objective function
in order to evade from the local optima and
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converge toward global optimum [14]. The
intrinsic parallelism in EAs helps them to be
appropriately qualified for wusing in multi-
objective optimization problems (MOPs). In
multi-objective optimization problems, there are
some objective functions which have to be
optimized (minimized or maximized)
simultaneously. These objectives are often in
contrast with each other, therefore when one of
them ameliorates, the other one worsens.
Consequently, there is no unique answer which
shows most optimal performance from the view of
all the objective functions [10]. In fact, in the
multi-objective optimization problem, there is a
group of optimum answers which are non-
dominated to each other but dominated to the
remainder of the answers in the feasible space.
These non-dominated optimum solutions are
called Pareto-optimal set [15]. This point
considerably differentiates the intrinsic nature
between single and multi-objective optimization
problems [10]. It is important to notice that the
aforesaid non-dominated optimum solutions sort
in various levels based on the Pareto fronts. In
fact, first front or Pareto curve with first rank
contains the most important solutions.

There are two main goals in searching process of
EAs [16]:

1. Guiding the search process towards to the
correct Pareto front

2. Avoiding premature convergence Or conserving
population diversity

In this work, differential evolution (DE) [17-18],
which is one of the recently proposed methods of
EAs, is used to optimally design the five degree of
freedom vehicle vibration passive model [10, 12].
DE is a swift and robust algorithm [19-20] and
can surpass well-known EAs in most of the
numerical benchmark problems [20]. In fact,
performance of DE is mostly influenced by two
important parameters which are namely, mutation
and crossover [21-23].

As seen in the literature, high value of mutation
factor can be efficacious in global search. But,
low value of that can accelerate the convergence
rate. Furthermore, the larger value of crossover
probability may produce the higher value of
diversity of the population, but, a lower one of
that may lead to local exploitation [23]. Therefore,
it could be easily perceived that choosing an
appropriate value of one of those aforesaid
parameters may have a considerable effect on the
output of the algorithm. Consequently, it is very
evident that tuning the values of the
aforementioned factors may improve the
performance of DE. In this paper, fuzzy logic [24]
is applied to dynamically adapt mutation factor of
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DE. Some works of the hybrid usage of DE and
fuzzy method is addressed here as follows:
Patricia Ochoa et al. [25] presented an approach
based on the hybrid usage of fuzzy logic and DE
for dynamically adapting the mutation parameter.
It has been depicted that the optimum results of
the differential evolution algorithm with Fuzzy F
(mutation factor) Decrease is superior to the ones
of the differential evolution algorithm with F
increase.

Salehpour et al. [26] proposed an approach based
on the combination of DE and fuzzy inference
system to dynamically tune the mutation factor. In
order to achieve this goal, two parameters, named,
the number of generation and population diversity
have been chosen as inputs and, one parameter,
named, the mutation factor as output of the fuzzy
logic inference system. Comparison of the
obtained results with classical DE and [25]
confirmed the superiority of the approach of this
work. Then, this method is used to optimally
design the five degree of freedom vehicle
vibration model [10, 12] in single objective
optimization area. The optimum result proposed
by this work showed a very good behavior
comparing with the ones of [10, 12].

In this paper, a multi-objective differential
evolution with dynamically adaptive mutation
factor [26] is wused for multi-objective
optimization of a 5-degree of freedom vehicle
vibration passive model [10, 12] excited by non-
stationary random road surface [11]. The
conflicting objective functions that have been
selected for optimization and the design variables
used here are chosen the same as [10, 12]. Multi-
objective optimization has been done in 2- and 5-
objective areas. Comparison of the obtained
results with those in the literature shows the
superiority of the results of this work.

2 Multi-objective Fuzzified Differential
Evolution (MFDE)

Generally, multi-objective optimization problem
is to seek a design variables (decision variables)
vector (X*) for fulfilling problem constraints to
achieve most proper answers for objective
functions (F (X)) [10, 16]:

X*={x}, x5, .., x:}T ()
FX) = {1, LX), ..., fi (XD} @)
in which X* € R™ and F(X)€Rk. The
optimization problem is subject to m inequality
constraints:

giX) <0 i=12,...,m (3)
and p equality constraints:
hi(X) =0 j=12,..p (4)

In fact, objective functions must be optimized
(either minimized or maximized) simultaneously.
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But, all of the maximization problems can be
converted to minimization ones by producting
equation (2) by -1 [27]. Therefore, it is possible to
assume the optimization process as the
minimization one. As a matter of fact, the
aforementioned  multi-objective  minimization
problem based on the Pareto approach needs some
definition such as Pareto dominance, Pareto
optimality, Pareto set and Pareto front which the
respectful reader may refer to [10, 16] for
achieving more details.
At first, in DE, in each generation, two operators,
namely, mutation and crossover, are applied to
parents population, respectively, to produce
offsprings population.
xf = (xfy, x5y x§;), i=12,.,n (5)
v = P (x§-28), mEnEl (O
Where, n, G, d, F =€ [0,1] [26], x{ with xf,
and x5, are, namely, number of population,
number of generation, number of dimension of the
search space, mutation factor, two randomly
chosen different vectors and the vector which is
randomly chosen from the first front of the
previous generation so far [28], respectively.
vﬁi ifri<C.or j=]J,
j=12,...d (7
{xfi Otherwise.
In which, r; is a number randomly selected from
[0, 1]; J is used in equation (7) to guarantee that
uf = xF and C, € [0,1] [26] indicates crossover
rate (crossover probability).
It is important to notice that for starting the
algorithm, an initial population is randomly
generated, and used as the parents population at
first. But, in next generations the above-
mentioned mechanism is reiterated.
The parents and offsprings population are
combined together using non-dominated sorting
algorithm [29] and crowding distance criterion
[29] and the resulted population enters the next
generation. The aforesaid procedure is repeated
until achieving the final optimum solutions based
on the Pareto frontiers.
The logic of non-dominated sorting algorithm is
that in this algorithm each individual of the
population is compared with all of the other
members of the population. In this process, if the
assumed individual is supreme to the others
(dominates others) or non-dominated in relation to
them, it will remains in the population. Then, the
non-dominated sorting algorithm assigns this
individual a position in the first front. This
mechanism is repeated for all the others of the
population to construct the first front. After
creating first front, the members of the first front
are deleted from the population and the procedure
is reiterated for the remainder of the population.

By completing this mechanism, all of the Pareto
fronts is constructed. The respectful curious
reader may refer to [29] to obtain more detailed
information about the non-dominated sorting
algorithm.

The aim of the crowding distance criterion is to
prevent packing the members of the population in
a limited location of the feasible search space and
remaining the rest of the search space unused. As
a matter of fact, the mentioned issue help to
preserve the diversity of the population. In order
to achieve this goal, a quantity named crowding
distance is assigned to each member of each
Pareto front. This criterion shows the distance of
each member of a front in relation to the
neighboring members around it. After assigning
this criterion, algorithm selects the members with
the higher values of the crowding distance for
creating new population. In fact, the individuals
selected which belong to the underpopulated part
of each front to help preserving the diversity of
the population. The respectful curious reader may
refer to [29] to obtain more detailed information
about the crowding distance criterion.

As mentioned earlier, DE is a good and fast
algorithm, but it has some deficiencies. Global
exploration ability of DE seems proper which it
can discover the possible area of the global
optimum, but its local exploitation ability may be
slow at fine-tuning the optimal point [30]. In
addition, DE may suffer from lack of diversity
which leads to the premature convergence.
Sometimes, even new individuals may move to
the next generation, but the algorithm cannot be
successful to find any better solutions. This
situation is called population stagnation [31].
Further, DE's performance highly depends on its
control parameters (such as mutation factor and
crossover probability) so it can be difficult to use
the aforementioned parameters for various cases
[32].

Due to the drawbacks of DE described above,
fuzzy logic method, as mentioned in last section,
is used to dynamically adjust the mutation factor,
F, by considering two important factors to
improve the performance of that as follows:
Number of generation

Population diversity

Since in low number of generations, it is needed
to find the vicinity of global optimum (optima) so
rather large movement in search space may be
useful. To fulfill this matter, high number of
mutation factor can be applied to explore through
feasible region. But, when algorithm approaches
towards global optimum (optima), it is important
to fine-tuning the optimal points. Actually, it
means that low number of mutation factor may be
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useful to exploit through the feasible search space.
For the case of population diversity, such kind of
analysis can be used here. It seems that when the
members of population are dense together (low
density of population), low value of mutation
factor for exploiting of the optimal points can be
effective. On the other hand, if the individuals of
population are far from together (high value of
density), high value of mutation factor may be
useful to explore through the feasible region [26].

M. Salehpour et al.

Therefore, in this paper a fuzzy inference system
based on two inputs namely, number of
generation and population diversity and one
output as mutation factor of type of Mamdani [26]
is used to alter the performance of the differential
evolution. Fuzzy rules used here [26] are shown in
table 1.

Table 1. Fuzzy rule-based system used here [26]

Diversity
Output of fuzzy system is Mutation
Medium High
Factor
Low (...) Medium (...) High (...) Very High
Number of Medium (...) Low (...) Medium (...) High
Generation - :
High (...) Very Low (...) Low (...) Medium

(...): Mutation Factor must be

The respectful curios reader may refer to [26] to
find more detailed information about the fuzzified
mutation factor.

I~

Figure 1. Schematically description of proposed algorithm.

Therefore, fuzzified mutation factor is used in
equation 6 instead of usual one and the remaining
of the procedure is the same as whatever
described before. As a result, whole mentioned
procedure can be named multi-objective fuzzified
mutation differentisl evolution used for Pareto
optimal design of vehicle vibration model.
Aforesaid procedure can be seen in figure 1.

Figure 2. Vehicle vibration model [10, 12].
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3 Five degree of freedom vehicle vibration

model

Vehicle vibration model used here is shown in
figure 2 [10, 12]. Details of fixed parameters of
vehicle model and design variables used here are
shown in table 2 [10, 12].
Equation of motions of vehicle model considering
small angle 6 can be shown as follows [10, 12]:

Zps = Zs — 10
1 =ZS—119
zg, = 7+ 1,0

Zs

Fss = kss(zc - Zps) + Css(zc - Zps)
Esl = ksl (Zsl -z + Cs, (Zsl —Zy)
FSZ = ksz (Zsz —273)+ Cs, (Zsz —Z3)

meZ, = —Fg

myis = —Fs, — Fs, + F
I8 = ,F, — ,F,, — rF
MmyZ; = F51 - kpl (z: — Zpl)
Mgz = F51 - kpl (z: — Zpl)
myZ, = F52 - kp2(22 - sz)
Table 2. Information related to fixed parameters and design variables [10, 12]

(8)

9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
A7)
(18)
(19)

Where z., zs, z;(i =12), z,(i=12) and 6
indicate vertical seat displacement, vertical
displacement of the center of gravity of the sprung
mass, vertical displacement of the ends of the
sprung mass and rotating motion (pitching
motion) of sprung mass, respectively. It is
important to notice that indices 1 and 2 show the
axes of forward and rear tires, respectively.

This model is excited by random non-stationary
road surface which obeys the following stochastic
differential equation (SDE) [11] exerted to
forward and rear tires:

Zp,(t) + $2mn .z, =

21N,/ sq(ng)sW(t) i=1,2 (20)
In  which, n,=001m"1, ny=01m"1,

sq(ng) = 256 x 1076 m3 and W (t) are depicted
road spatial cut-off frequency, standard spatial

Parameter Type of parameter Dimension Value Upper bound Lower bound
Forward tire mass (m,) Fixed parameter kg 40
Rear tire mass Fixed parameter kg 40
(my)
Seat mass Fixed parameter kg 75
mo)
Sprung mass Fixed parameter kg 730
(my)
Momentum inertia of Fixed parameter kg.m? 1230
sprung mass
s)
Forward tire stiffness Fixed parameter kg 175500
coefficient
(k)
Rear tire stiffness Fixed parameter kg 175500
coefficient
(Ky)
Forward suspension Fixed parameter m 1.011
position in relation to the
center of mass
)
Rear suspension position Fixed parameter m 1.803
in relation to the center of
mass
5
Seat stiffness coefficient Design variable ﬂ
m 5000 15000

(Kss)
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Forward stiffness Design variable N
coefficient for vehicle m
suspension 10000 20000
(Cs9)
Rear stiffness coefficient Design variable N
for vehicle suspension m
10000 20000
(Ks,)
Seat damping coefficient Design variable (E)
m 1000 4000
€)
Forward damping Design variable (E)
coefficient for vehicle m
suspension 500 2000
(Ks,)
Rear damping coefficient Design variable Ns
for vehicle suspension m
500 2000
(9]
Seat position in relation to Design variable
the center of mass
0 0.5
m
(@)
frequency, coefficient of road roughness for C- mass and rear tire

level road condition and stationary white noise,
respectively [11]. In addition, s indicates the
vehicle velocity in horizontal direction shown by
next equation:

S=vy+at (21)
in the above equation vy = 0 and a = 3.6 sﬂz are

initial vehicle velocity and acceleration in
horizontal direction.

It is supposed that the rear tire traverses the same
way as the front tire with a time delay shown by
At; this time delay can be achieved by solving
differential equation 21 by considering the
distance between forward and rear tire (I; + [;).
Analyzing equation 20 can show the fact that if
the vehicle moves with a constant velocity (zero
acceleration movement), type of road input is
random stationary. But, if the vehicle's velocity is
not constant (non-zero acceleration movement),
type of road input is non-stationary random [11].

4 Multi-objective Pareto optimization of
vehicle model using multi-objective
differential evolution with fuzzified mutation

In this section, the Pareto optimization of the
vehicle model is done using the procedure
proposed here in the 2- and 5-objective areas
using the information presented in table 2. The
conflicting objective functions used here are,
namely, vertical seat  acceleration (

Z. (Sﬂz)), vertical velocity of forward tire (
7z (%)), vertical velocity of rear tire (

7 (%)), relative displacement between sprung

mass and forward tire
(dy) and relative displacement between sprung

(d,) to be minimized by finding the proper
design variables through the optimization
processes [10, 12].

It should be noted that in single-objective
optimization one point presented as the optimum
solution as the view of all the objective functions
(which combined together using weighting factor
to constitute a single objective). But in the multi-
objective optimization, the process is done
considering all the (usual) conflicting objectives
simultaneously. Therefore, the results are in the
form of a set of non-dominated solutions which
the designer can use each of them based on the
necessity.

Remainder of this section is divided into two
subsections which are 2- and 5-objective
optimization, respectively.

4.1 Two-objective (bi-objective)
optimization of the vehicle vibration model

Four different pairs out of ten possible pairs
of objectives are considered in four bi-
objective  optimization  processes. The
aforesaid pairs of objective functions used to
be minimized separately, have been chosen as
(zc' 21)1 (zc' 22)1 (ECJ dl) and (ECJ dZ) [101
12]. The optimization processes have been
done in 240 generations using a population
with 80 members, a crossover probability of
0.9 and the fuzzified adaptable mutation
factor discussed earlier [26].

Pareto fronts of four above-mentioned pairs
of objectives have been depicted in figures 3-
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6, respectively. It can be easily seen that by
selecting an optimum point in each Pareto
front in order to achieve a better value for an
assumed objective function lead to attain a
worse value for other one and vice versa. As a
matter of fact, there is a special set of design
variables which cause the best values of the
associated objective function shown as the
Pareto front. Any other sets of objective
which cannot cause the proper values of each
objective function locate at the space inferior
to the Pareto front [10]. The aforesaid spaces
in figures 3-6 are at top/right side of each
Pareto front.

Bi-objective optimization
T :
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Figure 3. Pareto front of vertical seat acceleration and
vertical forward tire velocity resulted by bi-objective

optimization.
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Figure 4. Pareto front of vertical seat acceleration and
vertical rear tire velocity resulted by bi-objective

optimization.
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Figure 5. Pareto front of vertical seat acceleration and
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resulted by bi-objective optimization.

Comparison of the trade-off points obtained by bi-objective optimization
5 T )

vertical seat acceleration (m/s”)
o~
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™
]

&
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Number of non-stationary random road

Figure 6. Minimum and maximum points of vertical seat
acceleration resulted by C; [this work], C; [10] and C; [12]
for the 5-degree of freedom vehicle model exited by 1000
different non-stationary random roads.

Figure 3 exhibits the Pareto front of vertical
seat acceleration and vertical forward tire
velocity in the bi-objective plane. In this
figure, points A and B, show the best point of
vertical seat acceleration and the best one of
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vertical forward tire velocity, respectively. As
shown in this figure, points C; (C; in [10])
and C; (C; in [12]) locate on the top/right side
of the Pareto front. This important point
proves the very good performance of the
proposed method of this work. In figure 3,
point C; can be a proper optimum point as the
view of both objectives. As readily seen in the
figure, point C; exhibits a negligible increase
in the value of vertical forward tire velocity in
comparison with that of point B; (the design
with the least forward tire velocity) whilst its
value of vertical seat acceleration improves
considerably. Actually, trade-off design point
C; could not have been found without the use
of the Pareto optimum approach presented in
this paper.

The Pareto frontiers of the three other pairs
are shown in figures 4-6. As it can be
obviously seen in the aforesaid figures,
optimum points B,, C; and Bs represent the
best design point from the view of vertical
rear tire velocity, relative displacement
between sprung mass and forward tire and
relative displacement between sprung mass
and rear tire, respectively. In these figures,
points C,, C; and C, indicate the trade-off
design points. In the aforementioned figures,
points C,, C4 (C,, C, in [10]) and C,, C, (C,,
C, in [12]) are on the top/right side of the
Pareto fronts.

In figure 5, it seems that point C5 (C5 in [10])
and C; (C; in [12]) are in the right side of the
Pareto front and not in the top/right side of
that. But, optimum point C; in this figure can
be a proper choice for being trade-off because
it dominates both proposed point from the
view of the both conflicting objective
functions. Furthermore, it can be easily seen
through the figures 3-4 and 6 that the other
proposed trade-off points of this paper
dominate the other proposed points by [10]
and [12]. The values of objective functions
and their associated design variables of points
, By, By, B3, Cy, Gy, Cs, Cy, €, €y, C3, €4, €,
C,, C; and C, are shown in table 3.

In order to analyze the ability of the proposed
optimum points obtained by multi-objective
differential evolution with fuzzified mutation,
vehicles designed by points ¢; (this work), C;
[10] and C; [12] excited by 1000 non-
stationary random roads are observed here

M. Salehpour et al.

(figure 7). Comparison of the results of
minima and maxima of vertical seat
acceleration of each input road confirms the
very good performance of the proposed point
of this work. In fact, it can be readily seen in
figure 7 that the values related to the minima
and maxima obtained by point ¢, are lowest
among the corresponding ones obtained by
the proposed points of [10] and [12].

The above-mentioned important facts could
not have been obtained without the use of
optimum Pareto method of this work. The
aforesaid information obtained by four
separate bi-objective optimizations can be
attained by one five objective optimization
simultaneously  described in the next
subsection.

4.2 Five-objective optimization of the
vehicle vibration model

In this subsection a five-objective optimization
instead of four bi-objective optimization
separately, is done using the proposed method of
this work. The aforesaid five objective functions
are considered to be minimized simultaneously. It
is important to notice that such five-objective
optimization can include the results of four bi-
objective optimization previously found. The
optimization process has been done in 240
generations using a population with 80 members,
a crossover probability of 0.9 and the fuzzified
adaptable mutation factor discussed earlier [26].
Results of the five-objective optimization are
shown in figures 8-11. It seems that there are
some points in each plane which dominate each
other. But, when whole points resulted by the
five-objective optimization considered together,
they are non-dominated to each other. It can be
readily seen that the results of five-objective
optimization contain the ones of the
corresponding bi-objective optimization. As a
matter of fact, the Pareto fronts found in previous
subsection constitute the border of each planes
obtained by the five-objective optimization which
no solutions locate in a position superior to the
aforesaid border.
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Five-objective optimization
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Figure 11.

each point with the lowest aforesaid summation
value is the trade-off optimum points which is
named F here. As can be readily seen, in figures
8-11, trade-off point F is rather near to the borders
of each planes and dominates trade-off point F’
(point F in [10]). The values of objective
functions and their associated design variables of
points F and F' are presented in table 3.

Five-objective optimization
o Oplimum points ebtained by 5-objectve optimization of this work
o Optimum points obtained by 2-objectve optimization of this work
007 * Trade-off point suggested by this work
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Figure 10. Vertical seat acceleration with relative

displacement between sprung mass and rear tire in both 2-

and 5- objective optimizations.
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Minimum and maximum of

acceleration resulted by F; [this work] and F’ [10] for the 5-degree

of freedom vehicle model exited by 1000 different non-stationary

It is time to find a solution which can compromise
among all the five objectives simultaneously. As a
matter of fact, the optimum points obtained by the
separate four bi-objective processes are non-
dominated to each other. But there is no reason
that they can be in the other Pareto frontiers.
Therefore, the necessity to find the above-
mentioned solution is felt. In this way, the values
of five objective functions of all the optimum
non-dominated points are transformed into
interval zero and one. Then the transformed
valued are summed each other for each of the
optimum points. It can be easily figured out that

2864

random roads.

As done in the previous subsection, vehicles
designed by points F (this work) and F’ [10]
excited by 1000 non-stationary random roads are
observed here to examine the ability of the
proposed method of this work (figure 12).
Comparison of the results of minima and maxima
of vertical seat acceleration of each input road
confirms the very good performance of the
proposed point of this work. Actually, it can be
readily found in figure 12 that the values related
to the minima and maxima obtained by point F
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are lower than the corresponding ones obtained by
the proposed point of [10].

M. Salehpour et al.

Table 1. Values of objective functions and their associated design variables of the optimum points proposed by this work
and the ones of [10, 12]

ks Cs K, Cs, K, Cs, r Z; dy d, Zy Z

50195.9 183290  10003.54  500.110 18866 501.628  0.472488  1.39203 0.067085 0.036970 1.30356 1.11013

By 50385.67 1895.76 19981.0 1999.9 10693.1 1940.76 ~ 0.387792  3.29802  0.0460817  0.028797  0.703351  0.649977
Bz 51120.4 1290.58 10003.4 1936.28 19998.5 199991  0.498184  3.08173 0.044261 0.024257  0.728469  0.626211
Bs 50365.5 1919.41 13306.9 500.261 19998.5 199991  0.399703  2.12941 0.076021 0.023296 1.28811 0.626469

G 50589.2 1797.02 10001.1 1703.04 10072.6 589.935  0.439419  2.35564 0.046300 0.060718  0.770300 1.06836
G 50467.7 1778.49 10012.3 500.222 19998.5 199991  0.489250  1.62659 0.065951 0.023499 1.30349 0.626406

G 50276.7 2483.95 10000.1 2000 10000.1 509.213  0.000043  2.51411 0.042630 0.068094  0.718504 1.12987
Ca 50467.7 1778.49 10012.3 500.222 19998.5 1999.91  0.489250  1.62659 0.065951 0.023499 1.30349 0.626406
¢ 111177 3858.82 10000 1264.71 10117.7 1852.94 0.49804 2.50693 0.052170 0.028169  0.875027  0.663335
¢ 131961 3400 10000 1282.35 10000 1511.77 0.46863 2.59635 0.051910 0.032129  0.870031  0.722343
¢ 134706 2505.88 10000 2000 10078.4 1511.77 0.5 3.29476 0.043117 0.032805  0.718302  0.722187
G 98235.3 2917.65 10000 1311.77 18313.7 1994.12 0.5 2.56306 0.052073 0.024513  0.861698  0.629932
G 144263.6  3119.213  10003.33  1232.827 10029.59  1989.187  0.496346  2.72220 0.052652 0.026948  0.884721  0.644679
G2 139269.5 3484.991 10000.42  1259.879  10036.32 1613.628 0.471118  2.62818 0.052249  0.0307688  0.876576  0.702759
G 147210.7  3768.222  10001.55 1999.947  10003.77  1432.873  0.492994  3.12842 0.043108 0.034027  0.718101  0.738786
2 146265.7  3482.942  10000.25 1336.778  19999.92  1999.609  0.499107  2.79624 0.051785 0.024040  0.854808  0.6263638
50976.6 2396.39 10006.5  1968.389 19998.6  1997.248  0.459830 2.809716  0.043934 0.02432 0.723237  0.626598

, 144902 2788.24 10000 1294.12 10196.1 1982.35 0.49608  2.832621  0.051777 0.027044  0.866753  0.645288

To show the ability of the proposed approach of
this paper thoroughly, vehicles designed by points
F (this work) and F' [10] are also excited by
double-bump (figure 13) [10] as shown in figure
14. As seen through this paper, the optimum
points suggested here such as trade-off point F are
design based on the random non-stationary road
input. But, point F' [10] has been specifically
designed for the vehicle excited by a double bump
[10]. Therefore, such test can prove the
ascendency of the results of this paper more
transparently. As observed in figure 14, the time
behavior of wvertical seat acceleration of the
aforesaid points are close together. As a result, it
seems possible to use the trade-off optimum

International Journal of Automotive Engineering (1JAE)

point F (this work) instead of F’ [10] to optimally
design such a vehicle crossing double-bump [10].

The above-mentioned points shows the superiority
of the method and results of this paper. It is
obvious through this work that the significant
presented results would not have been obtained
without the multi-objective method of this paper.
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Double-bump excitation
0.05 &

---Excitation of forward tire
— Excitation of rear tire

Amplitude of double bump (m)

0,05 1 L
0 1 2 3 4
Time ()

Figure 12.  Double-bump excitation [10, 12].

Time response behavior

Vertical seat acceleration (m/s”)

Time(s)

Figure 13. Comparison of time response behavior of vertical

seat acceleration obtained by point F (this work) and F’ [12].

5 Conclusion

A new multi-objective approach based on the
combination of differential evolution using
fuzzified mutation with non-dominated sorting
algorithm and crowding distance criterion was
used to optimally design the vehicle vibration
model excited by non-stationary random road
surface. To achieve a dynamically adjustable
mutation factor, the number of generation along
with population diversity were adopted as inputs
and the mutation factor as output to constitute the
nine-rule fuzzy model. The objective functions
which conflict with each other were opted as
vertical seat acceleration, vertical forward tire
velocity, vertical rear tire velocity, relative
displacement between sprung mass and forward
tire and relative displacement between sprung
mass and rear tire. The optimization processes
have been done in both 2- and 5-objective areas
and it has been depicted that the results of 5-
objective optimization encompass those of bi-
objective optimization in terms of Pareto frontiers.
Additionally, the superiority of the obtained
optimum design points was proved in comparison
with those reported in the literature.
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